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Unsupervised ASR
• Supervision – Self-supervision - Unsupervision
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Unsupervised ASR

Aldarmaki, H., Ullah, A., Ram, S., & Zaki, N. (2022). Unsupervised automatic speech recognition: A review. Speech Communication.
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Recent works with self-supervised model 

Baevski, A., Hsu, W. N., Conneau, A., & Auli, M. (2021). Unsupervised speech 
recognition. Advances in Neural Information Processing Systems, 34, 27826-27839.
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Some Issues with the training scheme

• Instability

• Kmeans-segmentation is usually smaller than real phoneme segments

• Possibility to generate trival output
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Solution to previous issues

• Gradient penalty loss à reduce drastic changes to discriminator

• Segmentation smoothness loss à encourage similar output between
each segments

• Phoneme diversity loss à maximum entropy of prediction
distribution to escape from trivial solutions
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Wav2vec-u in the paper
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Wav2vec-u Robustness

Lin, G. T., Hsu, C. J., Liu, D. R., Lee, H. Y., & Tsao, Y. (2022, May). Analyzing the robustness of unsupervised speech recognition. In ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8202-8206). IEEE.
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Our Wav2vec-u Experiments (Librispeech-100)

• Key findings:
• Some factors are crucial to good convergence:

• Layer for feature extraction -> 7, 14 are the best, layer combination cannot always 
converge

• Network simplicity -> For example, adding two layer CNN would harm the results (+10-20 
PER or not converge); Layer combination sometimes also hurt results (+10 PER)

• Some factors are good to tune
• Preprocessing parameters: cluster number fo Kmean pooling (K=128, K=256, K=64) and 

adjacent pooling
• Training parameters: learning rates, weights for losses (for gradient penalty, phoneme 

diversity, and others)

• Our best PER results with wav2vec-u after tuning on Librispeech-100 
is 24.1%
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We want an end-to-end version…
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We want an end-to-end version…

• Use an Batchnorm to replace the
preprocessing

• Add K-means cluster objectives to 
stable the results

• Use CNN with stride to conduct
downsampling

Liu, A. H., Hsu, W. N., Auli, M., & Baevski, A. (2022). Towards End-to-end Unsupervised Speech Recognition. arXiv preprint 
arXiv:2204.02492.
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According to the paper:
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Our Wav2vec-U 2.0 Experiments (Librispeech100)

• Key factor for convergence:
• Batchnorm with scaling factor + large batch size

• Standard scaling factor 1.0 does not suitable for wav2vec2 feature (might different for 
other SSLs?) -> get +20PER or non-converge

• Large batch size is necessary to get reasonable performances -> get non-converge results 
with small batch size like 10

• Network simplicity
• Similar to wav2vec-u 1.0, cannot hold very large network -> e.g., even additional layer of 

CNN
• But can be mitigate / even get improvements by adding auxiliary losses (e.g., K-means 

clustering as prediction target)

• Our best system: 21.3 PER
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Still a long way to go…
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Still a long way to go…

• But we are working towards a more stable system which could be
easily trained
• Come back later!
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After unsupervised ASR

Of course, use for ASR!
• Use as a self-supervised model

• No supervised data needed

• Use as a segmenter
• Unsupervised phone segmentation

• Use as a connector
• Connecting Speech SSL with Text SSL
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Unsupervised ASR as an SSL Model
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Unsupervised ASR as an SSL Model
(SUPERB Public Leaderboard)

Upstream model Param (M) PR (↓) PR-10h (↓) ASR (↓)

Wav2vec2 (Large) 317.39 5.51 7.09 3.79

UASR
Hidden states 320.18 4.57 7.50 3.76

Phone posteriorgram (PPG) 320.18 4.53 6.26 3.83

Hubert (Large) 316.61 3.53 5.15 3.56

•Better performances in PR
•Similar performances in ASR
•Still cannot fill the gap between Hubert

•Phone Recognition (PR) - SUPERB public set (Librispeech-100)
•Phoneme Recognition (PR-10h) - Librilight 10h split
•Automatic speech recognition (ASR) - SUPERB public set (Librispeech-100)
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Unsupervised ASR as an SSL Model
(SUPERB Hidden-set Leaderboard)

Models Phone 
Recognition (↓)

Speech 
Recognition (↓)

Emotion 
Recognition (↑)

Query by 
Example (↓)

SUPERB 
Score (↑)

Wav2vec2 22.55 23.58 60.99 22.48 902

Hubert 18.22 22.03 64.84 33.05 959

UASR (PPG) 17.22 23.75 65.11 21.99 962

•Better performances in PR
•Similar performances in ASR
•Outperforms Hubert on several tasks

● SUPERB Score is a scaled score over 10 superb hidden-set tasks (from 0 - 1000). Calculation is 
based on https://superbbenchmark.org/challenge-slt2022/metrics

● All numbers are evaluated by SUPERB hidden sets (training & evaluation)

https://superbbenchmark.org/challenge-slt2022/metrics
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Unsupervised ASR as a segmenter

• It has a relative long background
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Sequence Compression for SSL

Why sequence compression?

Computational cost reduction
● Faster pre-training/inference speed

● Less operations & memory usage

→ Impact of subsampling on different downstream tasks

→ How much can the sequence be compressed?

Quadratic complexity
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Framework for Sequence Compression
(b) Subsample Target(a) With Upsample (target unchanged)
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Choices for subsampling layers– Fixed-length
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Choices for subsampling layers– Variable-length

…

…

…

0.2 0.9 0.6 0.6 0.6𝛼

0.2 0.8 0.1 0.6 0.3

Dong, L., & Xu, B. (2020, May). Cif: Continuous integrate-and-fire for end-to-end speech 
recognition. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP) (pp. 6079-6083). IEEE.
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Segmentation guidance

Unsupervised
● Repetition in HuBERT codes
● Repetition in wav2vec-U 2.0 codes

Supervised
● Forced alignments
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Experiments on SUPERB benchmark
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Computational burden?
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Unsupervised ASR as a Connector
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Unsupervised ASR as a Connector (Cont’d)

Existing method* to connect speech-SSL and 
text-SSL

● Method: Use speech-SSL feature clusters
● Domain is still mismatched

○ Acoustic v.s. Semantic

*: Guan-Ting Lin, Yung-Sung Chuang, Ho-Lam Chung, Shu-wen Yang, Hsuan-Jui Chen, 
Shuyan Dong, Shang-Wen Li, Abdelrahman Mohamed, Hung-yi Lee, Lin-shan Lee. 
“DUAL: Discrete Spoken Unit Adaptive Learning for Textless Spoken Question 
Answering” in Interspeech 2022
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Close the domain mismatch
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Unsupervised ASR as a Connector (Cont’d)

Mainly focus on 
understanding tasks 

(e.g., intent classification, 
speech translation, etc.)
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Experimental settings

• Speech SSL models: wav2vec 2.0
• Connector
• Kmeans pretrained from fairseq
• Unsupervised ASR

• Pretrained text model
• Randomized T5
• Phoneme T5
• Byte-pair-encoding T5

• Fixed representation vs. Fine-tune text model
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Unsupervised ASR as a Connector (Connector 
Options)

Tasks Fixed - FSC (↑) Fine-tuning - SLURP (↑)

Baseline (wav2vec2) 94.38 82.82

KM 93.69 85.31

UASR 94.88 86.14

● KM methods cannot function well without fine-tuning
● UASR as a connector outperforms KM methods in both fixed and fine-tuning cases
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Ongoing work

• ESPnet – Unsupervised Recognition – Opensource (EURO) project
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EURO project

● Front end

Generator

wav2vec 
2.0
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EURO project

● Front end

Generator

wav2vec 
2.0Hubert WavLM

Discriminat
or
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EURO project

● Front end

Generator
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EURO project
● Front end

○ wav2vec 2.0 
○ HuBERT
○ WavLM

● Faster data preprocessing
○ Parallel

■ VAD
■ Remove silence
■ MFCC clustering

○ On-the-fly feature extraction
■ Trainable weighted sum of features from 

different layer
● Training

● More on Training 
○ Reproducibility
○ Efficiency
○ Performance

Finished

Ongoing
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Thanks for your attention!


